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This paper assesses Mikl6s R6dei's [1991] proof of the proposition that alge- 
braic relativistic quantum field theory is stochastic Einstein local. The conclu- 
sion is that either R6dei's proof is spurious, in that it does not really prove what 
it intends to establish, or that the proof is fallacious. The paper is self-contained 
in the sense that the few ingredients of algebraic quantum theory that go into 
R6dei's proof are first summed up. Then Hellman's definition of stochastic 
Einstein locality is discussed, a detailed exposition is offered of R6dei's proof, 
and finally the author's refutation is explicated. 

1. A L G E B R A I C  R E L A T I V I S T I C  Q U A N T U M  F I E L D  T H E O R Y  

These in t roductory  remarks on algebraic relativistic quan tum field 
theory (AQT)  are based on H a a g  (1992) and Landsman  (1991). 

In  A Q T  one starts with the uni form closure 

allot.'= UcW(G) 

called a net, where G is an open bounded  subset o f  the Minkowski  
space-time manifold  J g  f rom special relativity, and d ( G )  is a C*-algebra o f  
local observables on G. The properties o f  this net dloc follow f rom the 
axioms of  AQT.  A state ~b is a normalized,  cont inuous,  positive linear 
functional  on  the local algebra, mapping  observables to complex numbers  
[q/: d ( G ) ~ - ,  C], in such a way  that  t//(d(G)) is the expectation value o f  
observable A ( G ) e d ( G )  in state ~/. Let .~- be the set o f  states. A Heisen- 
berg-like picture is employed:  the states are, in the terminology o f  AQT,  
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nonlocal, or global, while the local observables carry the space-time depen- 
dence. The Gel'fand-Naimark-Segal construction achieves a correspon- 
dence between states and cyclic representations of a C*-algebra d(G) .  We 
mention the fact that the Hilbert space enters at the level of representation 
(of the local algebra) as the so-called representation space. The details of 
the construction of the representation from the state, and of many other 
things, need not concern us at the present moment; what does concern us, 
because used by Rrdei in his proof, are the following two points. 

First, in orthodox von Neumann-Dirac quantum mechanics the prob- 
ability of finding value a when measuring a physical magnitude represented 
by a (nondegenerate) operator J of a system in (normalized) state [~k)~(f 
equals the expectation value of the projector Po,=[a)(a[ in state [~b), 
where J [ a )  = a[a): 

Prob([A~ I~'> = a) = (• [P, [~k) 

In the algebraic approach the probability of finding a value a when 
measuring local observable A(G)~d(G) in state ~k e ~  equals the expecta- 
tion value of local projection Pa(G)~d(G) in state ~, e~-: 

Prob([A (G)] g' = a) = ~l(ea (G)) (1) 

Both ways of doing things yield the same number; the difference is that the 
piece of measurement apparatus associated with some physical magnitude, 
performing the measurement in space-time region G, is stipulated by 
ordinary quantum mechanics to measure the operator J and by the 
algebraic approach to measure the local observable A(G). 

The second point concerns the implementation of the Poincar6 group 
in AQT (actually the covering group ~ in order to deal with spin--we 

gloss over this point). Poincar~ symmetry in AQT means that to each 
Poincar6 transformation g..= (A, b), where A denotes a Lorentz transfor- 
mation and b a space-time translation, there corresponds an automorphism 
on the net Cr : d ( G )  ~ d(gG) edior The local algebra d (G)  of region G 
is mapped to the local algebra dg(G) of the Poincar6 transformed region 
g(G) in such a way that all algebraic relations between the observables are 
conserved (form invariance) and that all scalar quantities, like expectation 
values (and thus probabilities), are invariant. The states and observables in 
AQT transform by g e ~  as follows (the existence of inverse transforma- 
tions is a group property): 

~k ~ ~k' = ~O o ~g", and A ~ A '  = ~Xg o A o g inv  (2) 

It is easy to see that the expectation value of any observable A(G)~t(G) 
in any region G c ~r in any state ~ is invariant under any Poincar6 
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transformation g ~N: 

O'(A'(G')) = (Oo ~ign~)[(~g o A o ginV)(g(G))] = qt(A(G)) 

Actually the transformations (2) of AQT follow from the Poincar6 invari- 
ance of scalar quantities applied to the expression for the expectation 
values as we just did. Applying (2) to P,~(G)~r yields for V~b s~-  

O(cte[P,,(G)]) = O(P'~(g(G))) (3) 

One might wonder: where are the quantum fields? The transition from 
an algebra of local observables to a realistic field theory is notoriously 
difficult and one of the main areas of interest of AQT; connection between 
the two is established by (internal, dynamical) superselection rules and the 
concomitant symmetries. We shall not be needing the fields in this paper. 
To focus the mind through AQT glasses: think about any microphysical 
system at G, of which any physical magnitude is represented by an element 
A(G) of the local algebra ~r which can be measured by an A-apparatus 
at G. 

2. STOCHASTIC EINSTEIN LOCALITY 

Hellmann (1982a) aims to close the gap between the physical require- 
ments of special relativity, especially the no-superluminal-action require- 
ment, and the idea of "Bell-locality," which is the notion that (the 
probability of) measurement outcomes (are functions which) do not de- 
pend on whatever there is outside the light-cone of the measurement event. 
A theory is deterministic in magnitude A ( z l , . . .  , zn), Zi~olr iff any two 
models of the theory that agree evaluated at all k-tuples y~ . . . .  , Yk (Yi ~J / )  
for all k e ~ earlier z than an arbitrary n-tuple x~ . . . .  , xn (x~ e ~ ) ,  also agree 
with regard to A(x~ . . . .  , x,,). A theory is deterministic iff it is deterministic 
in all its magnitudes. Call the intersection of an infinite space-like hypersur- 
face dividing Jg into two disjoint parts and the backward light-cone of any 
subset V c ~/  (which may contain only one point) a spacelike backward 
tight-cone slice o f  V, or for short a V-splice. A theory is deterministic 
Einstein local (DEL) in magnitude A(zl . . . .  , z,,) iff any two models of the 
theory that agree evaluated at all k-tuples y ~ , . . . ,  Yk (Yi s~r for all k E N, 
on an arbitrary x~ . . . .  , xn-splice, agree with regard to A(x~ . . . .  , x,). 3 
Hellman (1982a, p. 455)) shows that every deterministic theory that obeys 

~Hellman (1982a, p. 458) takes this definition relative to an inertial frame. 
SBackward light-cone L C - ( x ~  . . . . .  x , )  is then the union of the backward light-cones: 
U~LC-(x,). 
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DEL implies a Bell inequality. And Hellman (1982a, p. 450) claims "that  
any genuine physical theory, deterministic in its physical magnitudes, will 
have to satisfy this model-theoretic condition [DEL] if it is to avoid 
commitment to action-at-a-distance". Indeed, if two models match in a 
backward light-cone but differ at the top of this light-cone, then the 
determining factor for this difference (the theory is deterministic) must lie 
outside the light-cone and hence propagates superluminally. 

Hellman (1982b) aims to formulate a condition analogous to DEL for 
stochastic theories, called stochastic Einstein locality (SEL), and purports 
to show that SEL does not imply a Bell inequality and that quantum 
mechanics does not violate SEL. We shall not be concerned with the latter 
two points, only with the first one. Here is an: 

Informal Definition. A theory is stochastic Einstein local (SEL) in 
magnitude A(zl . . . . .  zn), where zi are space-time points, iff any two models 
of  the theory which agree evaluated on an arbitrary x~ . . . . .  x,-splice, for 
an arbitrary k-tuple, also agree with regard to the probability of find- 
ing value a for magnitude A(xl . . . . .  Xn), for all possible values of 
A(x~ . . . . .  x,) ,  but exclude from this probability all conditional probabili- 
ties of  finding value a for A ( X l , . . . ,  Xn) that (i) can be derived from any 
joint probability which is locally determined by the theory (meaning: any 
two models of the theory which agree evaluated on a splice of the 
intersection of the backward light-cones of the events of this joint probabil- 
ity under consideration also agree with regard to this joint probability); 
and that (ii) that can be derived by using information outside the backward 
light-cone of xl . . . . .  x,  in order to assign a new state to the system under 
consideration at x~ . . . .  , xn. 

The provisos (i) and (ii) do not come into play in R6dei's proof, so a 
formal account of them will not be given-- in contradistinction to the 
central part of SEL. But their idea is this (see Fig. 1). Hellman (1982b, p. 
467) deems proviso (i) necessary to avoid that "virtually no theory with 
essentially stochastic elements could satisfy locality [SELl." An example 
that would turn orthodox quantum mechanics into an SEL-violating 
theory if proviso (i) were not included is Einstein's remark that if one 
particle leaves a decaying nucleus and is detected somewhere, then the 
probability of finding it somewhere else drops instantaneously to zero. But, 
as Hellman continues, "there is no basis for inferring that some energy or 
force has propagated faster than light." Hellman (1982b, p. 478) motivates 
proviso (ii) by the idea that in quantum mechanics it is "an unresolved 
issue how to understand reduction" of the state to an eigenstate (the 
projection postulate). One could add that there is no such thing as a 
physical interaction, as far as detectors can tell, between the spacelike 
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Fig. 1. 

M Pt~io~,t>(B) xa 

�9 i ~ inglet) (A A B) locally determine( 

Hellman's provisos of stochastic Einstein locality in the Bell experiment. 

separated particles in the Bell experiment when a measurement is per- 
formed on either one particle. Thus everything in orthodox quantum 
mechanics that prima facie may turn quantum mechanics into a nonlocal 
theory, in the sense of violating SEL, is explicitly excluded by means of 
these provisos. Small wonder that Hellman (1982b, p. 479) can prove that 
quantum mechanics without the projection postulate is a stochastic Einstein 
local theory. Tailor-made suits always fit. 

Hellman takes a theory T to be a consistent set of sentences (proposi- 
tions) formulated in a formal language ~ (T) .  In the formal definition of 
SEL we shall encounter quantification over relations and functions (both 
are logically speaking predicates), so the syntaxis of La(T) must be at least 
as rich as second-order predicate logic. For the semantics of ~ ( T )  we shall 
choose from the set of all admissible bivalent valuations, which are 
mappings ~ ( T )  ~ {T, F}. As usual T ~ S means: all admissible valuations 
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that satisfy T (render T True), satisfy sentence S too. A theory T c .ga(T) 
is (by definition) closed under derivation (if T F S, then SET), where the 
notation of derivability (k) is defined, for example, by Gentzen's system of 
Natural Deduction (Van Dalen, 1983, p. 156). Mod(T) abbreviates the 
proper class of all models of T (it is not a set, so we shall use E as an 
abbreviation of 'belongs to'). Sent(La(T)) is the set of sentences of ~(T) .  
An explication of what is meant here by 'a model of theory T' will not be 
given; we only need to know the soundness property: all derivable sen- 
tences from the theory are satisfied (rendered true) by all models: 

VMe Mod(T), S~Sent(Z~'(T)): T F S =~ M ~ S, 

or equivalently, M ~ T (4) 

Below L C - ( G )  is the backward light-cone of G c J / ;  [ A ( x l , . . . ,  Xn)]g'6a 
means: the measured value of A(Xl . . . . .  xn) in state ~b lies in a; Sp(A) is 
the set of allowed values of magnitude A by the theory; we employ 
Putnam's 'bastard notation': the variables of the logical universe of the 
model are replaced by their interpretations (the space-time points of the 
Minkowski manifold J//); and employ another bastard notation: for in- 
stance, f ( x )  = r refers, besides to the obvious, also to the statement "the 
funct ionfmaps x onto r," so we use the same symbols for the elements of 
mathematical reality as for their names in La(T). Pred,=Un Pred(n) 
Form(La(T)) (neN), where Pred(n) is the set of n-ary predicates, naming 
the n-ary relations R" and the ( n - 1 ) - a r y  functions f " - ~ ,  and 
Form(LP(T)) is the set of well-formed linguistic expressions (formulas) of 
the language ~(T) .  The physical magnitude A(x~ . . . . .  x , )  is treated as an 
(n + 1)-ary predicate. Now we are ready for the: 

Formal Definition. A theory T is stochastic Einstein local (SEL) in 
magnitude 

A(zl . . . .  , z ,) ,  zi e~r iff 

VM, M'e Mod(T), Vx~, . . . ,  x, -splice ~ L C - ( x l  . . . . .  x , )  ~ ~ ,  

V k e N ,  Vk-tuples y ~ , . . .  ,Yk on this splice: 

if VRkePred(k), V f k e P r e d ( k  + 1), Vr~R: 

M ~ Rk(y l  . . . . .  Yk) r M" ~ Rk(y l  . . . . .  Yk) and 

M ~ f k ( y l , . . .  ,Yk) = r  ~ M" ~ f k ( y l  . . . . .  Yk) =r ,  

then Va c Sp(A) c R, Vstate q~: 

M ~ Prob([A(xl . . . . .  x,)]~ea) = p  

M" ~ Prob([A(xl . . . . .  x , ) ] ~ a )  =p ,  

under provisos (i) and (ii). 
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Remarks. The application of SEL to quantum mechanics is not so 
straightforward as Hellman claims--who takes for the magnitude A in 
the Bell experiment the observable spin of particle 1 along a [~a(1)] and 
for Zl = zA (n = 1), where zA ~ '  is the place-time of the spin measure- 
ment event--,  because observables in quantum mechanics are not func- 
tions on space-time points, but operators on Hilbert space. So A(zA) 
should be understood in this case as: a measurement event of observable 
,4 at zA ~J[,  predicating space-time point za with value +�89 of 
the particle! 

Another point is that Hellman (1982a, p. 448) assumes that "T 
specifies a background ontology of Minkowski space-time: every model M 
of T contains a manifold ~ '  of 'events'." This is obviously not the case in 
quantum mechanics, though the above definition of SEL is straightfor- 
wardly applied to quantum mechanics by Hellman (1982b, part 4). If one 
wants to add a space-time arena to quantum mechanics, for instance, to 
locate measurement-events, this arena has to be the space-time manifold of 
Newtonian physics, because the space-time symmetry group of quantum 
mechanics is not the Lorentz group, but the Galilei group. It is, however, 
not easy to understand why we should fear superluminal action in a 
space-time arena which lacks a light-cone structure. 

3. RI~DEI'S PROOF 

Mikl6s Rrdei (1991) offers a proof that AQT obeys the SEL criterion. 
To prove this, Rrdei first defines what it means for AQT to be a SEL 
theory. Below Sp(A(G)) is the spectrum of observable A(G) and G1 . . . . .  Gk 
a k-tuple of open, bounded space-time regions in J/g. 

Formal Definition. AQT is stochastic Einstein local (SEL) in G c J / i f f  

VA(G) Ed(G), VM, M'e Mod(AQT), 

Vk~l~, Vk-tuples G1 . . . . .  Gk c L C - ( G )  c jg :  

if VRk~Pred(k), Vfk~Pred(k + 1), Vr E R: 

M ~ Rk(Gl . . . . .  Gk) "=" M" ~ Rk(G1 . . . . .  Gk) and 

M ~ f k ( G l , . . . ,  Gk) = r r M '  ~fk(al . . . . .  Gk) = r, 

then Va c Sp(A(G)) = R, V~b e~ ' :  

M ~ Prob([A(G)]*~a) = p  ~ M t ~ Prob(r~(G)]*ea) = p  

under provisos (i) and (ii). 
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Again, AQT is SEL iff it is SEL in all G c J[ .  This definition of SEL in the 
context of AQT is not identical to Rrdei's definition; we have added a few 
things for clarity. (a) Rrdei omits the state ~k e ~ .  But it must be added, 
because the probability of an observable having a certain value depends on 
the state. (b) Rrdei takes the probabilities of finding the value of a local 
observable A(G) in an interval a ~ Sp(A(G)), for all subsets of the spectrum 
of the observable, whereas Hellman takes probabilities of finding exactly 
one value a of an observable, for all values in the spectrum of the 
observable (as we have done). So, formally Rrdei's definition accommo- 
dates observables with continuous spectra too. (c) The provisos are not 
mentioned by Rrdei; they should be, in order to prevent spurious violations 
of SEL. 

Next we arrive at the central result: 

Proposition. Algebraic Relativistic Quantum FieM Theory is a stochas- 
tic Einstein local theory. 

Rrdei's Proof. The proof is a reductio ad absurdum argument. First a 
rough sketch, then the rigorous proof. 

Assume AQT and not SEL, that is, assume the antecedent of SEL and 
the negation of the consequent. Now push the region G into its backward 
light-cone by an active space-time translation b ~  [bG ~ LC-(G)]  and 
consider the local algebra on the shifted region [d(bG)] which is related to 
the local algebra on the original region G by an automorphism (~b) on the 
net (allot). Poincar6 symmetry requires that the probabilities on G concern- 
ing any observable of the local algebra [A(G)e~(G)]  are equal to the 
probabilities concerning the corresponding observable of the local algebra 
on the shifted region [A'(bG) = ~b[A(G)] ~r So if a certain probabil- 
ity is different in two models, as follows from the negation of the conse- 
quent of SEL, it remains different after applying a Poincar6 transformation 
to the situation. By mathematical manipulation this probability is con- 
strued as a real scalar function on the shifted region (hb: J// 
bG ~ [0, 1] c R), which consequently means that one function ascribes 
different values to the shifted region in the two models. But by supposition 
of SEL's antecedent all corresponding functions of the two models ascribe 
identical values to identical regions in the backward light-cone of G. 
Contradiction. 

Now the rigor. Assume that AQT violates SEL. Then the antecedent 
of SEL is true by assumption. Any space-time translation is a Poincar6 
transformation: b e~ .  Let b~eR 4 be a timelike vector pointing backward; 
choose IIb ll sufficiently '.,,ge such that it shifts G into its own backward 
light-cone: bG c -LC- (G) .  The second conjunct of SEL's antecedent cer- 
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tainly holds for the special case G1 = bG (k = 1). VM, M% Mod(AQT), 
Vf  ~ Pred(2): 

M ~f (bG)  = r ~r M '  ~ f (bG)  = r (5) 

Now we turn to SEL's consequent. Either 3a~Sp(A(G)), 3~k E ~ ,  such 
that the following is false: 

M ~ Prob([A(G)]~'~a) = p  ,**, M" ~ Prob([A(G)]*~a) = p  

or one of the provisos is false. Since the provisos are completely ignored by 
Rfdei, we shall interpret him as assuming, for reductio, that a genuine 
violation of SEL occurs. In other words, we interpret Rfdei charitably, so 
that only spurious violations are not accounted for by his proof. The 
negation of SELs consequent is then true, which yields 

M ~ Prob([A(G)]~a)  = p  ^ M" ~ Prob([A(G)]~'ea) v~p (6) 

Using (1), we obtain for this reductio assumption (6) 

M ~ $(Pa(G)) = p  ^ M '  ~ ~O(Pa(G)) # p  (7) 

The state ~ e ~  is a linear functional which maps observable Pa(G) to a 
number in the interval [0, 1] c ~. 

Since the space-time symmetries ~ of AQT form a group, ~b has an 
inverse automorphism ~nv ; we obtain from (3) with g = b and applying the 
functional 

r = r (8) 

The right-hand side of (8) defines a mapping h b from bG c ~ / t o  [0, 1] = 
[the left-hand side of (8) is a probability due to (1); so hb is a real scalar 
function on a region of the manifold]: 

h b : ,/[/[ ~-~ R, hb(bG) = ~k(Pa(G)) where h b := d/o ot~ nv o P'~ (9) 

Substituting in (7) yields 

M ~ hb(bG) = p  ^ M '  ~ hb(bG) v~p (10) 

Since (5) holds VfePred(2) ,  we are allowed to choose the special case 
f =hb: 

M ~ hb(bG) = r  r M '  ~ hb(bG) = r  (11) 

Whether p = r or p ~ r, on both accounts (10) contradicts (11). To avoid 
this absurdity, it must be assumed that AQT does not violate SEL. QED 

Rfdei's proof is far more compact, which made it not that easy to see 
where it goes wrong; the more detailed exposition above will enable us to 
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point out where and to understand why the proof is either spurious or 
fallacious. 

4. REFUTATION OF Ri~DEI'S PROOF 

To start with, we remark that the proof effectively uses only the 
symmetry of the group of space-time translations--which constitutes to- 
gether with the Lorentz group the Poincar6 group ~ - - s o  the proof holds, 
too, for an algebraic field theory having the Galilei group as its space-time 
symmetry group. But surely a nonrelativistic field theory need not obey 
SEL. 

Furthermore, Poincar6 symmetry by itself does not exclude tachyon 
fields; they can be introduced without destroying the Poincar6 symmetry. 
With tachyon fields it is easy to think of a model that violates SEL by 
triggering a tachyon source in a region Gtach c ~// at spacelike distance 
from the region G c ~ ;  then the probabilities at G will definitely be 
influenced by Gt~ch; hence a violation of SEL. Tachyon fields are excluded, 
however, by an axiom of AQT stating that all energies are positive (Haag, 
1992, p. 106). But this axiom is nowhere used in the proof. 

Another crucial ingredient one expects to appear in the proof is AQTs 
axiom of local commutativity, which states that the algebras of spacelike 
separated regions commute (Haag, 1992, p. 107). But it is absent from the 
proof too. 

With the above-mentioned axioms of AQT it may well be possible to 
prove that AQT obeys SEL, but the considerations above already strongly 
indicate that this cannot be established by R6dei's proof. First we shall 
detect a logical oversight in the proof, which renders the proof vacuous. 

The assumption that SELs consequent is false, in that the probability 
of an observable A(G) having value a in state r is different in two models, 
generates no problem. But setting these probabilities equal to the expecta- 
tion value of the local observable Pa(G)~(G),  as stipulated by AQT (1), 
generates a major problem, because AQT defines the state ~ , ~ "  as the 
functional which maps Pa(G) to its one and only expectation value. 
Assume it equals pc[0, 1]: 

"r = p"~AQT 

Then due to (7) clearly M'  is not a model of AQT, for M" renders this 
statement false. If we assume that this expectation value does not equal p, 
but p'( # p), such that M'  does not turn out to be a model of AQT, then 
M is not a model of AQT, again due to (7). So statement (7) is inconsistent 
with the assumption that both M and M'  are models of AQT. Having 
hardly asserted the reductio assumption (7), one can immediately conclude 
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that it contradicts AQT, given the soundness property (4) of the models. So 
the detour with the space-time translation b e~,  which is the actual content 
of  the proof, is superfluous. 

Furthermore, even SELs antecedent has not been used! So this 'proof' 
goes through if we replace SELs antecedent by: any two models that 
disagree in all their functions and relations in the backward light-cone of 
G c ~ .  Then Rrdei's proof justifies the following proposition, too: if two 
models of AQT that disagree in all their functions and relations in the 
backward light-cone of G c d,/, then they agree with regard to all the 
expectation values of all local observables of ~r at G. Quite a miracle! 

The conclusion is that this is an empty proof. The only aspect of AQT 
it effectively uses is that AQT defines the state by means of an expectation 
value. Every aspect of AQT that smells of locality (the Lorentz group, the 
so-called diamond property, local commutativity, which are explicitly 
added to AQT to meet the exigencies of special relativity) is ignored in 
Rrdei's proof. 

Is there no way of retaining both M and M' as models of AQT? Yes 
there is. 4 If the expectation values of Pa(G) in the two models M and M' 
are different, then according to AQT they just belong to different states, say 
~b and tk, respectively. On this account both M and M'  still are models of 
AQT and (7) is saved. The Rrdei procedure brings us in this case to two 
different scalar functions on bG: 

M = r  4, o o e ;  

M" ~ qb(bG) = ~b(Pa(G)), qb := r ~ ~nVo Pa 

If some system under consideration is at bG in state ~b according to model 
M and in state ~b according to model M', then we do arrive at statement 
(10). This is presumably what R~dei had in mind. But we cannot arrive 
logically foolproof at a contradiction between statements (10) and (5), as 
needed for the reductio argument. To see this, note the following. 

In general, the values of Poincar~ transformed functions on Poincar6 
transformed regions of the Poinear~ transformed situation are equal to the 
values of the original functions on the original regions in the original 
situation: f(bG)=fb(b(bG)) and h(G)=hb(bG), where fb = f ~  binv and 
hb = h o bil l  But Poincar6 transformed functions on Poincar6 transformed 
regions of the Poincar6 transformed situation are not supposed to be equal 
to the original functions on the Poincar6 transformed regions of the 
original situation: fb(b(bG))r and hb(bG)~h(bG). To suppose 
this, would be a mistake. It is exactly the mistake Rrdei makes by 

4Dennis Dieks pointed to this way out of the preceding criticism. 
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supposing that the b-transformed function hb on the b-transformed region 
bG is equal to an original function f on the b-transformed region bG c j/[ 
of the original situation: hb(bG ) ~ f ( b G ) .  The illegitimate choice f =  hb just 
before statement (11) is the culprit, as well as the tacit identification 
b(G) = bG. Therefore (5) does not entail (11) and the desired contradiction 
between statements (5) and (10) simply does not follow. To conclude, by 
choosing different states in order to avoid a spurious proof, the reasoning 
turns out to be fallacious. 

We close with the remark that in a more encompassing treatment of 
SEL in the context of AQT, which contains a correct proof of the central 
Proposition of the present paper, the latter fallacy of Rrdei's proof will be 
treated in formal detail. See Muller and Butterfield (1994). 
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